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ABSTRACT

A framework for temporal estimation of contour
deformation in image sequences has been developed. The
proposed solution for point-wise tracking finds, for a point,
one optimum trajectory across multiple frames, in contrast
with frame-to-frame tracking (2-frame). The multiframe
approach aims (i) to find the complete point trajectory as the
global optimal track over the space with multiple contours,
and not as optimal sub-tracks concatenated over this set of
contours; and (ii) take into account information from an
extended time interval. The multiframe solution is framed as
a shortest-path problem and uses the Dijkstra’s algorithm.
The method applies the dynamic programming technique to
find the global trajectory. The algorithm requires no special
initialization or markers. It is a non-invasive method and
image modality independent. The usefulness of the
multiframe tracking is illustrated using synthetic images.
The method demonstrated to be consistent with methods
published in the literature.

Index Terms— Left ventricular motion estimation, point-wise
tracking, medical imaging, multiframe, shortest-path algorithm

1. INTRODUCTION

The detection and description of motion is one of the
fundamental tasks of early vision. Motion estimation from
image sequences has numerous applications in imaging
sciences. In general, it consists of a correspondence problem
that finds the positions of the object points at consecutive
image frames through time. Usually, a tracking algorithm
finds as output a set of tracks, where each track corresponds
to the trajectory of a point between two frames. For image
sequences, tracks are concatenated into a single trajectory.
The proposed method is to be applicable to estimation
of the temporal evolution of the left ventricle (LV) in
cardiac images. The tracking of heart wall can provide
information such as effective movement and contraction of
cardiac muscles. It is useful to assessment the ventricular
function and changes in response to therapy; for analysis of
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shape variation between normal and pathological structures;
and to understand the evolution of diseases. Pathologies as
ischemia modify the kinetics of the left ventricle of the heart:
regions with necrosis do not deform; contractility decreases
in ischemic regions; and do promote compensation
phenomena of motion in normal regions to preserve the
global myocardial function. Major developments in the past
decade in medical image acquisition techniques have
extended the capacity and fidelity of image-based diagnosis
through different image acquisition modalities, e.g., Positron
Emission Tomography (PET), Computed Tomography (CT),
and Magnetic Resonance Imaging (MRI) [1, 2].

To address the tracking of the LV in medical images, a
variety of methods has been developed. These methods
range from model-based approaches for contour
representation and motion estimation [3], to the use of
markers moving along with cardiac muscle [4]. Geiger et al.
[5] investigated the use of dynamic programming with
search restrictions to get the mapping of bi-dimensional
closed contours. Cohen and Herlin [6] proposed the use of
geodesic paths applied to distance transforms of the given
contours. The paths were achieved by following the opposite
direction of the gradient of the distance transform sum.
Papademetris et al. [7] proposed Bayesian optimization for
the tracking in Echocardiography. They used “a priori”
model of the muscle fibers for the orientation of tracking and
a noise model based on curvature similarity. MR tagging is
an important technique for tracking, however it applies only
for Magnetic Resonance Images [8], it presents high costs
and is difficult to use in clinic routine. McEachen et al. [9]
proposed a cardiac wall tracking based on multiframe
approach. Their method differs from the proposed at this
work in several aspects: the representation scheme is based
on deformable model, it uses harmonic to represent
periodicity and incorporates a priori knowledge about heart
wall motion, i.e., about the periodicity of the motion; the
optimization is performed by means of an recursive least
squares algorithm; and uses a velocity map for estimate
initial correspondences.

The multiframe approach in this work aims (i) to find
the complete point trajectory as the global optimal track
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over the space with multiple contours, and not as optimal
sub-tracks concatenated over the set of contours; and (ii)
take into account information from an extended time
interval. The multiframe solution is framed as a shortest-path
problem and uses a modified Dijkstra’s algorithm [10, 11].
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Fig. 1. Sequence of contours to be tracked on a graph. The pixels
on the contours represent the nodes of the graph and the arcs
connect elements of different contours. Arcs on larger nodes
represent the optimum cost path.

In Section II, we present the multiframe tracking
method. In Section III, we present the results of a
comparison between multiframe tracking and Geiger’s
tracking [5]. Finally, we state our concluding remarks in
Section IV.

2. MULTIFRAME TRACKING
2.1. Our approach

The multiframe tracking optimizes a cost function over
multiple frames, in contrast with frame-to-frame tracking (2-
frame). The hypothesis is that a multiframe solution is
adequate to produce precise and coherent results since the
complete trajectory for a point is not a composition of piece-
wise optimal sub-tracks, as in 2-frame approach. The global
optimal track for a point is achieved over a space with

[ contours. The path starts at a reference point p, on the

C 1<¢<!

. and arrives the

contour at time 7,

corresponding point p', at last contour C, | (Figure 1 and
Figure 4). Along the path, the positions of the respective
correspondences on all contours from C, to C,_, are stored.
The multiframe approach differs from frame-to-frame one
since the costs at a given time are estimated and stored using
costs from previous frames, and propagates the estimated
costs to next frames.

The tracking problem is reduced to a search problem in
graph. We assume that the reader is familiar with the basic

graph theory terminology. A graph G = (V,E ) is a set of

vertices (V) and another of arcs (£) that connect the

vertices. We associate the sequence of contours to be
tracked with a graph in which the pixels on the contours
represent the nodes of the graph and the arcs connect
elements of different contours (Fig. 1).

2.2. Distance-based measure estimation

The closeness measure is the distance between the candidate
point and the central point p, of a window search W(Ci )

This term penalizes the mapping of points with large
distance from central point. The measure brings advantage
for the closest candidate points to central point (Fig.2).

estimated points
inred

/ p, inblue
/ closest points

top
"-..._-.
candidate points

Fig. 2. Candidate points that composes the search window (black
dots), and estimated points (red dots).

2.3. Curvature-based measure estimation

This measure in function cost estimates the curvature at each
contour point. In bi-dimensional case, the curvature is based
on direction changes at that point and can be obtained as
cosine of half’s angle between two successive vectors:

k(u) = cos(0/2) =|u, —u,|/2, (1)
where u; and U, are unit vectors of adjacent edges that

intersect p, (Fig. 3).

Fig. 3. Curvature measure estimation on contour points.
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Fig. 4. Minimum cost path computation. Trajectory of the seed point p, shown in doted

lines. ca (v) is the cumulative cost along the paths.

2.4. Cost assignment

The cost function works directly on the contour data. To
each reference point, closeness and similarity are taken into
account. For estimate the cost between two possible

matching points p, and p , reference and candidate

points, respectively, we have:

) =w|p, = po| + wolk@) = kW[ +c0), @
where k(u) and k(V) are the curvatures at the points, W,
and W,are weights and c(V') is the cost of the possible

correspondent of p,, at the previous contour. The mapping

for a salient point is achieved by the total cost minimization
over all contours

min [Zl:c(v)} (3)

where M is the mapping between p, and p, (Fig.4).

2.5. Optimal Path Selection

The algorithm performs a single time over the search space
represented by the graph with the contour sequence, in
contrast with frame-to-frame approaches, for which the
number of executions depends on the number of frames. The
optimal configuration can be achieved by Dijkstra’s
algorithm [10], minimizing the total cost at Eq. 3.
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Algorithm Multiframe Tracking

1 begin

2 given the n >=3 contours C,

3 construct a single graph from contours

4 compute the costs for the arcs using the weights,
closeness and curvature features (Eq. 2)

5 for complete contour sequence, find out the
global optimum mapping for each seed point
through dijkstra algorithm.

6 end

3. EXPERIMENTAL RESULTS

The input to the algorithm is a set of contours and the output
is a set of trajectories. In the present method is assumed that:
(i) the contours are previously segmented and extracted at
each frame; (ii)) the contours do not intersect during
movement; and (iii) the temporal sampling of the images is
sufficient for the contours have approximately the same
length and shape between two frames. This is a reasonable
assumption, as suggested by Friboulet et al. [12]. They
observed the movement of salient points on LV and
concluded that cardiac wall keep its curvature feature stable
as a result of small muscle deformation along the cardiac
cycle.

For simulated deformation, since we know the correct
mapping, the mean Euclidean distance error was estimated.
In order to evaluate and compare the proposed approach,



several evolving contours were simulated and the tracking
was performed using Geiger’s [5] and Multiframe algorithm.
An initial contour S was generated as a regular polygon
with 12 nodes in an image of size 256 x256 pixels. Several
random contours were generated as follow: regular
expansion of § with different velocities in pixels/unit.
Tablel shows the average and standard deviation of
Euclidean distance error for position tracking on
simulations. The proposed approach presented better results
compared to the Geiger’s technique. In addition the
proposed solution is simpler and uses a single cost function
for multiple contours. The Fig. 5 depicts the results based on
Multiframe tracking for 4 contours with 12 nodes.

Table 1. Average and standard deviation for mismatches (mean
square error in pixels) for tracking using Geiger’s and multiframe
tracking approaches on 10 random sets with 20 contour sequences
(Statistical validation with Test-t (Student), p = 0.05)). Each
sequence is composed by 4 contours.

Geiger’s Method ~ Multiframe Tracking
Average 1.070 0.974
Standard
Deviation 0.836 0.968

Fig. 5. Results of Multiframe Tracking. Yellow lines indicate the
resultant matching.

4. CONCLUSIONS

We have presented an alternative approach to point-wise
tracking called multiframe tracking. The method casts the
tracking problem as a shortest-path one on graph. The
proposed framework can be used for a large variety of
motion models and cost functions, including statistical based
functions. Based on experiments using synthetic data in 10
random sets with 20 contour sequences, we have shown a
robust and simple methodology. The method does not
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assume the presence of markers and is modality image
independent. Although most methods in literature provides
only sparse correspondence information, the work proposed
do allow an optimum tracking for all points on the contour,
not only markers or salient points. In addition, the
optimization procedure is simple and coherent with the
human perception process, which postpone inferences about
motion until incoming information be sufficient.
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